Methods for developing expert systems in corporate information systems: enhancing enterprise economic stability
https://doi.org/10.46914/1562-2959-2025-1-2-222-233
Abstract
This study aims to provide an in-depth analysis of the impact of expert systems integrated into corporate information systems on the economic stability of enterprises. In the modern business environment, the role of expert systems is significantly increasing, as they serve as valuable tools for strategic decision-making, risk management, and improving operational efficiency. This article explores the use of modern methods such as artificial neural networks, fuzzy logic, swarm intelligence, and Bayesian networks, with each method’s effectiveness and limitations evaluated through comparative analysis. The research employed machine learning tools developed in modern programming languages like Python and R, with libraries such as scikit-learn and TensorFlow showing notable results. In addition, the efficiency of the systems was assessed using specific metrics based on expert opinions and real enterprise data. The authors emphasize that the implementation of expert systems is accessible not only to large enterprises but also to small and medium-sized businesses. This study can be seen as a contribution to regional and international scientific work exploring the synergy between CIS and ES. The findings show that expert systems have a significantly positive impact on companies' financial indicators, including a 20% increase in current liquidity, a 23% rise in net profit, a 12% reduction in expenses, and a 25% decrease in debt load. Furthermore, the article discusses the specific features and opportunities of implementing expert systems in the context of Kazakhstan, offering practical recommendations for accelerating the digital transformation process. The study also highlights the importance of building a data-driven management culture within the digital ecosystem.
About the Authors
T. N. MaulenovKazakhstan
m.t.s.
Almaty
N. O. Мaulenov
Kazakhstan
c.t.s., associate professor.
Almaty
A. B. Daushebayev
Kazakhstan
m.t.s., teacher.
Almaty
References
1. Jackson P. (1999) Introduction to Expert Systems. 3rd ed. Addison-Wesley. P. 455–458. (In English).
2. Durkin J. (1994) Expert Systems: Design and Development. Prentice Hall. P. 714–719. (In English).
3. Negnevitsky M. (2005) Artificial Intelligence: A Guide to Intelligent Systems. 2nd ed. Pearson Education. 394 p. (In English).
4. Sätbaev Q. (2021) Qazaqstandyq käsıporyndardyñ sifrlyq transformasiasy. Astana: Tehnopoligraf. P. 216–219. (In Kazakh).
5. URL: https://elibrary.kz/download/transformatsiya_kasiporyn_satpayev (өtіnіsh berіlgen kүn: 16.06.2025). (In English).
6. Luger G.F. (2009) Artificial Intelligence: Structures and Strategies for Complex Problem Solving. 6th ed. Pearson, 754 p. (In English).
7. Bonabeau E., Dorigo M., Theraulaz G. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, 1999. 307 p. (In English).
8. Kennedy J., Eberhart R. (2001) Swarm Intelligence. Morgan Kaufmann, . P. 512–515. (In English).
9. Pearl J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann. P. 552–556. (In English).
10. URL: https://www.sciencedirect.com/book/9780080514893/probabilistic-reasoning-in-intelligent-systems (accessed: 16.06.2025). (In English).
11. Korb K.B., Nicholson A.E. (2010) Bayesian Artificial Intelligence. 2nd ed. CRC Press, 728 p. DOI: 10.1201/9781439815917. (In English).
12. Laudon K.C., Laudon J.P. (2022) Management Information Systems: Managing the Digital Firm. 16th ed. Pearson. P. 688–691. (In English).
13. O’Brien J.A., Marakas G.M. (2010) Management Information Systems. 10th ed. McGraw-Hill. P. 768– 771. (In English).
14. Han J., Kamber M., Pei J. (2011) Data Mining: Concepts and Techniques. 3rd ed. Morgan Kaufmann. P. 703–706. (In English).
15. Witten I.H., Frank E., Hall M.A. (2016) Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. Morgan Kaufmann. P. 654–657. URL: https://www.elsevier.com/books/data-mining/witten/978-0-12-804291-5. (In English).
16. Qazaqstan Respublikasy Strategialyq josparlau jäne reformalar agenttıgı Ūlttyq statistika bürosy. Resmi derekter, 2020–2023. URL: https://stat.gov.kz (ötınış berılgen kün: 16.06.2025). (In Kazakh).
17. Älemdık Bank. Qazaqstannyñ ekonomikalyq körsetkışterı. Halyqaralyq salystyrmaly taldau. 2023. URL: https://data.worldbank.org/country/kazakhstan (ötınış berılgen kün: 16.06.2025). (In Kazakh).
18. Däuletov Ä.K. (2019) Käsıporyndardyñ aqparattyq jüielerı. Almaty: Ekonomika. P. 348–351. (In Kazakh).
19. Russell S., Norvig P. (2020) Artificial Intelligence: A Modern Approach. 4th ed. Pearson. URL: https://aima.cs.berkeley.edu (accessed: 16.06.2025). (In English).
20. Qazaqstan Respublikasy Sifrlyq damu, innovasialar jäne aeroğaryş önerkäsıbı ministrlıgı. Sifrlyq industrialandyru statistikalyq jinağy–2023. – Nūr-Sūltan: KazİİTU, 2023. P. 45–48. URL: https://digit.gov.kz (ötınış berılgen kün: 16.06.2025). (In Kazakh).
21. Poole D.L., Mackworth A.K. (2017) Artificial Intelligence: Foundations of Computational Agents. 2nd ed. Cambridge University Press. URL: https://artint.info (accessed: 16.06.2025). (In English).
22. QazŪU Habarşysy. Eksperttık jüielerdıñ qazırgı zamanğy biznestegı rölı // QazŪU Habarşysy – Ekonomika seriasy. 2021. No. 3(45). P. 56–67. URL: https://bulletin.kaznu.kz/index.php/economics (ötınış berılgen kün: 16.06.2025). (In Kazakh).
Review
For citations:
Maulenov T.N., Мaulenov N.O., Daushebayev A.B. Methods for developing expert systems in corporate information systems: enhancing enterprise economic stability. Bulletin of "Turan" University. 2025;(2):222-233. (In Kazakh) https://doi.org/10.46914/1562-2959-2025-1-2-222-233