Artificial intelligence in financial risk management: global trends, XAI and regulatory approaches in Kazakhstan
https://doi.org/10.46914/1562-2959-2025-1-4-376-395
Abstract
The integration of artificial intelligence (AI) and machine learning (ML) into financial risk management is accelerating globally and in Kazakhstan. These technologies enhance forecast accuracy and automate key processes, while simultaneously posing challenges for model transparency, decision ethics, and regulatory oversight. According to the National Bank of the Republic of Kazakhstan, about 31% of financial organizations are already using AI, while among second-tier banks the share of users reaches 60%. At the same time, only a small portion of organizations have integrated AI across all key business functions, indicating that most market participants are at an early stage of digital maturity [1]. This study presents a 2010–2025 systematic literature review conducted under PRISMA principles, combining international evidence with the Kazakhstani context of applying AI/ML to various categories of financial risk (credit, market, operational, fraud/AML). Bibliometric and thematic analyses indicate a sharp post-2015 increase in publications, diffusion of complex architectures (deep neural networks, ensemble methods), and rising attention to explainable AI (XAI). Contemporary ML algorithms deliver substantial improvements in the accuracy, speed, and reliability of risk forecasts relative to traditional approaches [2], while limitations in interpretability and production-level implementation persist. The operational robustness of solutions requires MLOps practices (version control, automated deployment of software and models into production environments, and model monitoring and validation). The scientific novelty of the article lies in the comprehensive systematization of AI methods by types of financial risks (credit, market, operational, fraud/AML) with consideration of XAI, as well as the development of a structured roadmap for AI implementation for banks and regulators. The practical significance lies in a set of specific recommendations for the development of data infrastructure, model risk management processes, XAI tools, and SupTech solutions designed for use by financial organizations and supervisory authorities in Kazakhstan.
About the Authors
K. Zh. AbishevaRussian Federation
PhD student.
Almaty
I. V. Selezneva
Russian Federation
d.e.s., professor.
Almaty
Sh. D. Kydyrbayeva
Russian Federation
c.e.s., associate professor.
Almaty
M. V. Shtiller
Russian Federation
d.e.s., professor.
St. Petersburg
References
1. Iskusstvennyj intellekt na finansovom rynke Kazahstana: tekushhee sostojanie, perspektivy i analiz reguljatornyh podhodov. AO «Nacional'naja platezhnaja korporacija»; Nacional'nyj bank Respubliki Kazahstan. URL: https://aifc.kz/wp-content/uploads/2024/08/1.2-iskusstvennyj-intellekt-na-finansovomrynke-kazahstana-tekushhee-sostoyanie-perspektivy-i-analiz-regulyatornyh-podhodov.pdf (data obrashhenija: 14.10.2025) (In Russian).
2. Nallakaruppan M.K., Chaturvedi H., Grover V. (2024) Credit risk assessment and financial decision support using explainable artificial intelligence // Risks. Vol. 12. No. 10. P. 164. (In English).
3. Theodorakopoulos L., Theodoropoulou A., Bakalis A. (2025) Big data in financial risk management: evidence, advances, and open questions: a systematic review // Frontiers in Artificial Intelligence. No. 8. Art. 1658375. (In English).
4. Hess V.L., Damásio B. (2025) Machine learning in banking risk management: mapping a decade of evolution // International Journal of Information Management Data Insights. No. 5. Art. 100324. (In English).
5. Bussmann N., Giudici P., Marinelli D., Papenbrock J. (2020) ExplainableAI in Fintech Risk Management // Frontiers in Artificial Intelligence. No. 3. Art. e00026. (In English).
6. Filonenko E. (2024) Podderzhka klientov i risk-menedzhment: kak finuchrezhdenija Kazahstana ispol'zujut II // Digital Business. URL: https://digitalbusiness.kz/2024-04-23/kak-finuchrezhdeniya-kazahstanaispolzuyut-ii/ (data obrashhenija: 14.10.2025) (In Russian).
7. Nurullin Je. (2025) Tokaev ob II: rech' ide t o nashem suverenitete // Tengrinews. URL: https://tengrinews.kz/kazakhstan_news/tokaev-ob-ii-rech-idt-o-nashem-suverenitete-582126/ (data obrashhenija: 14.10.2025) (In Russian).
8. Regulation (EU) 2024/1689 of the European Parliament and of the Council on harmonised rules on artificial intelligence. Artificial Intelligence Act. 2024. (In English).
9. Nakispekova A. (2025) Kazakhstan Sets Stage for AI Regulation with New Draft Law. // The Astana Times. URL: https://astanatimes.com/2025/06/kazakhstan-sets-stage-for-ai-regulation-with-new-draft-law/ (accessed: 14.10.2025) (In English).
10. Waltman L.R., van Eck N.J.P. (2010) Software survey: VOSviewer, a computer program for bibliometric mapping // Scientometrics. Vol. 84. No. 2. P. 523–538. (In English).
11. Aria M., Cuccurullo C. (2017) Bibliometrix: An R-tool for comprehensive science mapping analysis // Journal of Informetrics. Vol. 11. No 4. P. 959–975. (In English).
12. Khan F.S., Mazhar S.S., Mazhar K. et al. (2025) Model-agnostic explainable artificial intelligence methods in finance: a systematic review // Artificial Intelligence Review. No. 58. P. 232. (In English).
13. Tian X., Tian Z., Khatib S.F.A., Wang Y. (2024) Machine learning in internet financial risk management: a systematic literature review // PLOS ONE. No. 19. Art. e0300195. (In English).
14. Sethi M., Bohra N.S., Johri A., Asif M. (2025) Emerging dimensions in Fintech: Insights from bibliometric analysis // Digital Business. No. 5. P. 100113. (In English).
15. Jekonomicheskoe obozrenie NBK: primenenie reguljatorom mashinnogo obuchenija i iskusstvennogo intellekta, analiz zarubezhnyh investicij v RK. Nacional'nyj bank Respubliki Kazahstan. 2024. URL: https://www.nationalbank.kz/ru/news/informacionnye-soobshcheniya/16417 (data obrashhenija: 15.10.2025) (In Russian).
16. Reguljativnoe rukovodstvo po ispol'zovaniju iskusstvennogo intellekta v AIFC. Astana International Financial Centre. 2024. URL: https://aifc.kz/wp-content/uploads/2024/10/regulatory-guidance-on-using-ai-inthe-aifc-2024.pdf (data obrashhenija: 15.10.2025) (In Russian).
17. Tokaev poruchil sozdat' issledovatel'skij universitet v oblasti iskusstvennogo intellekta // Informburo. kz 1 oktjabrja 2025. URL: https://informburo.kz/novosti/tokaev-porucil-sozdat-issledovatelskii-universitet-voblasti-ii (data obrashhenija: 15.10.2025) (In Russian).
18. Transforming Paradigms: A Global AI in Financial Services Survey. Cambridge Centre for Alternative Finance. World Economic Forum. 2020. URL: https://www3.weforum.org/docs/WEF_AI_in_Financial_Services_Survey.pdf (accessed: 15.10.2025) (In English).
19. Scopus User Guide // Quick Reference. (2025) Analyze search results. Elsevier. URL: https://supportcontent.elsevier.com/RightNow%20Next%20Gen/Scopus/Files/Scopus_User_Guide.pdf (accessed: 12.10.2025) (In English).
20. Page M.J., McKenzie J.E., Bossuyt P.M. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews // BMJ. No. 372. P. 71. (In English).
21. Kitchenham B. (2004) Procedures for Performing Systematic Reviews: Joint Technical Report TR/SE0401 // Department of Computer Science. Keele University. National ICT Australia Ltd. Keele, UK. Sydney, NSW, Australia. (In English).
22. Kraus A., Küchenhoff H. (2017) Credit Scoring and the Optimization Concerning Area Under the Curve // University of Edinburgh Business School, Centre for Economic Research. URL: https://cer.businessschool.ed.ac.uk/wp-content/uploads/sites/55/2017/02/Credit-Scoring-and-the-Optimization-Concerning-AreaUnder-the-Curve-Anne-Kraus-and-Helmut-K%C3%BCchenhoff.pdf. (accessed:12.10.2025) (In English).
Review
For citations:
Abisheva K.Zh., Selezneva I.V., Kydyrbayeva Sh.D., Shtiller M.V. Artificial intelligence in financial risk management: global trends, XAI and regulatory approaches in Kazakhstan. Bulletin of "Turan" University. 2025;(4):376-395. (In Russ.) https://doi.org/10.46914/1562-2959-2025-1-4-376-395
JATS XML















