Demographic processes in Kazakhstan: current trends and forecasting the future development
https://doi.org/10.46914/1562-2959-2022-1-3-60-71
Abstract
The economic development of any country depends on the nature of demographic processes. The size of the population and its composition directly affect the scale of production, demographic processes – fertility, mortality, migration – largely depend on the socio-economic situation and the living standard of the population. The research aims to assess the current state of demographic processes in Kazakhstan and forecast their development until 2050. The article gives a brief description of the demographic development over the years of independence, identifying 3 main stages different in their dynamics and background socio-economic conditions, starting with the demographic crisis of the 1990s with the threat of depopulation to stabilization and population growth in the 2000s. The impact of the COVID-19 pandemic on the development of demographic processes and related indicators of the social sphere is analyzed. It is determined that the observed demographic development radically changes the existing model of population reproduction. The analysis of trends in demographic processes, and their cause-and-effect relationships with socio-economic processes serve as the basis for the development of forecasts of the number and structure of the population in the future. The methods of extrapolation and the age shift were used for forecasting.
About the Authors
L. S. SpankulovaKazakhstan
d.e.s., associate professor
Almaty
Z. K. Chulanova
Kazakhstan
c.e.s., leading researcher
Almaty
References
1. Preston S.H., Vierboom Y.C. (2021) The Changing Age Distribution of the United States: Population and Development Review, no. 47(2), pp. 527–539. DOI: 10.1111/padr.12386. (In English).
2. Chulanova Z.K. (2021) External migration of the population of Kazakhstan during the years of independence: The scientific heritage, no. 2(76), pp.37–45. DOI: 10.24412/9215-0365-2021-76-2-37-45/ (In English).
3. Pilkauskas N.V., Amorim M., Dunifon R.E. (2020) Historical Trends in Children Living in Multigenerational Households in the United States: 1870-2018: Demography, no. 57(2), pp. 1–28. Doi: 10.1007/s13524-020-00920-5. (In English).
4. Conti S., Oliveira dos Santos F., Wolters A. (2021) A Novel Method for Identifying Care Home Residents in England: A Validation Study: International Journal of Population Data Science, no. 5(4), pp.16–20. DOI: 10.23889/ijpds.v5i4.1666. (In English).
5. Keyfitz N. (1977) Applied Mathematical Demography. Wiley: New York. (In English).
6. Keyfitz N. (1996) Foreword. In W. Lutz (Ed.). The future population of the world: What can we assume today? (Revised Edition). London: Earthscan, doi:10.4324/9781315066929. (In English).
7. Alho J.M. (1991) Effect of aggregation on the estimation of trend mortality: Mathematical Population Studies, no. 2, pp. 53–67. DOI: 10.1080/08898489109525323. (In English).
8. Heligman L, Pollard J.H. (1980) The Age Pattern of Mortality: Journal of the Institute of Actuaries, no. 107, pp. 49–75. (In English).
9. Lee R.D., Carter L.R. (1992) Modelling and forecasting U.S. mortality: Journal of the American Statistical Association, no. 87, pp. 659–671. doi:10.1080/01621459.1992.10475265. (In English).
10. Mcnown R., Rogers A., Little J. (1994) Simplicity and complexity in extrapolatwe population forecasting models: Mathematical Population Studies, no. 5, pp. 235–257. doi:10.1080/08898489509525404. (In English).
11. Booth H. (2006) Demographic forecasting: 1980 to 2005 in review: International Journal of Forecasting, no. 2, pp. 547–581. doi:10.1016/J.IJFORECAST.2006.04.001. (In English).
12. Smith S.K.,TaymanJ.,SwansonD.A.(2013)Overviewof thecohort-componentmethod.Apractitioner’s guide to state and local population projections. New York, London: Springer Dordrecht Heidelberg. (In English).
13. Thatkar P., Pawar D.D., Ingale K.Y. (2018) Cohort-component method for projection of population of India: International Journal of Scientific Research, no. 7(6), pp. 387–389. (In English).
14. Riiman V., Wilson A., Milewicz R. (2019) Comparing artificial neural network and cohort-component models for population forecasts: Population Review, no. 58(2), pp. 100–116. DOI: 10.1353/prv.2019.0008. (In English).
15. Arhangel'skij V.N., Elizarov V.V. (2016) Demograficheskie prognozy v sovremennoj Rossii: analiz rezul'tatov i vybor gipotez. Nauchnye trudy: Institut narodnohozjajstvennogo prognozirovanija RAN. No. 1. P. 524–544. (In Russian).
16. Juzaeva Ju.R. (2014) Prognoz chislennosti naselenija Orenburgskoj oblasti v razreze gorodskih i sel'skih territorij metodom «vozrastnogo prodvizhenija» // Jekonomika, statistika i informatika. Vestnik UMO. No. 5. P. 155–160. (In Russian).
17. Alai D., Arnold-Gaille S., Sherris M. (2015) Modelling cause-of-death mortality and the impact of cause-elimination: Annals of Actuarial Science, no. 9(1), pp. 167–186. Doi:10.1017/S174849951400027X. (In English).
18. Koshanov A.K., Chulanova Z.K. (2021) Nekotorye podhody k ocenke sostojanija chelovecheskogo kapitala (na primere Kazahstana) // Vestnik Moskovskogo universiteta. Serija 6: Jekonomika. No. 4. P. 49–72. doi.org/10.38050/01300105202143. (In Russian).
19. Brian C., O’Neill D., Balk M.B., Markos E. (2001) A Guide to Global Population Projections: Demographic Research. no. 4(8), pp. 203–288. DOI: 10.4054/DemRes.2001.4.8/ (In English).
20. Bassett M.T., Chen J.T., Krieger N. (2020) Variation in racial/ethnic disparities in COVID-19 mortality by age in the United States: A cross-sectional study: Plos Medicine, no. 17(10), pp. 32–42. DOI: 10.1371/journal.pmed.1003402. (In English).
21. Balbo N., Kashnitsky I., Melegaro A., Meslé F., Mills M. C., Valk D. (2020) Demography and the Coronavirus Pandemic. Population and Policy. Brief, no. 25. Berlin: Population Europe. (In English).
22. Dasgupta S., Emmerling J. (2021) COVID-19 lockdown led to an unprecedented increase in inequality: Research Square. DOI: 10.21203/rs.3.rs-191155/v1. (In English).
23. Li G., Wang F., Quan S.S. (2020) The impact of COVID-19 on the protection of rural traditional village: Journal of Intelligent & Fuzzy Systems, no. 39(6), pp. 8685-8693. DOI: 10.3233/JIFS-189264. (In English).
24. Qazaqstan Respublikasy strategialyq josparlau jäne reformalar jönındegı agenttıgınıñ ūlttyq statistika bürosy. URL: https://www.stat.gov.kz/ (ötınış berılgen kün: 15.05.2022). (In Kazakh).
Review
For citations:
Spankulova L.S., Chulanova Z.K. Demographic processes in Kazakhstan: current trends and forecasting the future development. Bulletin of "Turan" University. 2022;(3):60-71. https://doi.org/10.46914/1562-2959-2022-1-3-60-71