Preview

Bulletin of "Turan" University

Advanced search

Automotive industry 4.0: preconditions for the economic effectiveness of collaborative and mobile robotics

https://doi.org/10.46914/1562-2959-2025-1-3-54-63

Abstract

Amid Kazakhstan’s accelerated digitalization and national smart-manufacturing agenda, this paper presents a practice-oriented economic framework for evaluating, at the pre-design stage, the feasibility of deploying collaborative and mobile robotics in the automotive industry. The goal is to align engineering choices with production economics before on-site trials, reducing the risk of inflated expectations and showcase-only pilots. Methodologically, the framework combines conceptual modeling with quantitative screening: it decomposes total cost of ownership into capital and operating elements; maps operational effects across body/assembly stations, quality control, and inplant logistics; and ties these effects to measurable KPIs – overall equipment effectiveness (and its Availability- Performance-Quality factors), cycle time, defect rates, planned/unplanned downtime, and safety incidents. A distinctive feature is the explicit integration of infrastructure constraints and risk factors – precision and calibration requirements, connectivity and communication quality, safety for human – robot collaboration, cybersecurity exposure, and workforce acceptance – into both the economics and a managerial go/no-go checklist. The framework yields (i) a reproducible pilot → expand → scale pathway with milestone metrics, (ii) a structured data package to enable subsequent statistical verification and learning across pilots, and (iii) adaptable accounting rules that fit local procurement and budgeting practices. By making trade-offs transparent and context-aware, the approach supports Kazakhstani automotive firms in selecting viable use cases, sizing investments, and sequencing deployments in line with national digitalization priorities

About the Authors

R. A. Alshanov
Turan University
Kazakhstan

d.e.s., professor

Almaty



A. K. Tuleshov
Joldasbekov Institute of Mechanics and Engineering
Kazakhstan

d.t.s., professor

Almaty



M. Zh. Kuatova
Joldasbekov Institute of Mechanics and Engineering; International University of Engineering and Technology
Kazakhstan

PhD, leading researcher

Almaty



References

1. International Federation of Robotics. World Robotics 2024 – Industrial Robots. Executive Summary. 2024. URL: https://ifr.org/img/worldrobotics/Executive_Summary_WR_2024_Industrial_Robots.pdf (accessed: 02.08.2025).

2. Lu Y. Industry 4.0: A survey on technologies, applications and open research issues // Journal of Industrial Information Integration. 2020. Vol. 6. P. 1–10. DOI: 10.1016/j.jii.2017.04.005.

3. Xu L.D., Xu E.L., Li L. Industry 4.0: state of the art and future trends // International Journal of Production Research. 2021. Vol. 56. No. 8. P. 2941–2962. DOI: 10.1080/00207543.2018.1444806.

4. Wang L., Törngren M., Onori M. Current status and advancement of cyber-physical systems in manufacturing // Journal of Manufacturing Systems. 2021. Vol. 37. P. 517–527. DOI: 10.1016/j.jmsy.2015.04.008.

5. Lee J., Bagheri B., Kao H.A. A cyber-physical systems architecture for industry 4.0-based manufacturing systems // Manufacturing Letters. 2022. Vol. 3. P. 18–23. DOI: 10.1016/j.mfglet.2014.12.001.

6. Ionescu T.F., Negulescu O. Cost Calculation and Deployment Strategies for Collaborative Robots in Production Lines: An Innovative and Sustainable Perspective in Knowledge Based Organizations // Sustainability. 2024. Vol. 16. No. 13. Art. 5292. DOI: 10.3390/su16135292.

7. Krüger J., Lien T.K., Verl A. Cooperation of human and machines in assembly lines // CIRP Annals. 2021. Vol. 58. No. 2. P. 628–646. DOI: 10.1016/j.cirp.2009.09.009.

8. Bogue R. Growth in e-commerce boosts the market for mobile robots in warehouses // Industrial Robot: An International Journal. 2022. Vol. 43. No. 6. P. 583–587. DOI: 10.1108/IR-08-2016-0224.

9. Khamis A., Hussein A., Elmogy A. Mobile robot navigation and collision avoidance in dynamic environments // Robotics and Autonomous Systems. 2023. Vol. 72. P. 32–52. DOI: 10.1016/j.robot.2015.04.007.

10. Silva A., Simões P., Blanc F. Supporting decision making of collaborative robot (cobot) adoption: the development of a framework // Technological Forecasting & Social Change. 2024. Vol. 204. Art. 123123. DOI: 10.1016/j.techfore.2024.123123.

11. Polonara M., Romagnoli A., Biancini G., Carbonari L. Introduction of Collaborative Robotics in the Production of Automotive Parts: A Case Study // Machines. 2024. Vol. 12. No. 3. Art. 196. DOI: 10.3390/machines12030196.

12. Țîțu A.M. et al. Cost Calculation and Deployment Strategies for Collaborative Robots in Production Lines: An Innovative and Sustainable Perspective in Knowledge Based Organizations // Sustainability. 2024. Vol. 16. No. 13. Art. 5292. DOI: 10.3390/su16135292.

13. Hermann M., Pentek T., Otto B. Design principles for Industrie 4.0 scenarios // Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS). 2016. P. 3928–3937. DOI: 10.1109/HICSS.2016.488.

14. Michalos G., Makris S., Papakostas N., Mourtzis D., Chryssolouris G. Automotive assembly technologies review: Challenges and outlook for a flexible and adaptive approach // CIRP Journal of Manufacturing Science and Technology. 2021. Vol. 2, No. 2. P. 81–91. DOI: 10.1016/j.cirpj.2010.03.001.

15. Borangiu T., Raileanu S., Anton F. A service-oriented approach to holonic manufacturing control in the Industry 4.0 context // IFAC-PapersOnLine. 2021. Vol. 48. No. 3. P. 1421–1426. DOI: 10.1016/j.ifacol.2015.06.290.

16. Schuh G., Potente T., Wesch-Potente C., Weber A.R., Prote J.P. Collaboration mechanisms to increase productivity in the context of Industrie 4.0 // Procedia CIRP. 2021. Vol. 19. P. 51–56. DOI: 10.1016/j.procir.2014.05.016.

17. Lu Y. Industry 4.0: A survey on technologies, applications and open research issues // Journal of Industrial Information Integration. 2020. Vol. 6. P. 1–10. DOI: 10.1016/j.jii.2017.04.005.

18. Xu L.D., Xu E.L., Li L. Industry 4.0: state of the art and future trends // International Journal of Production Research. 2021. Vol. 56. No. 8. P. 2941–2962. DOI: 10.1080/00207543.2018.1444806.

19. Zhao Y., Chen X., Wu Y. Impact of industrial robot on labour productivity // Insights in Global Development. 2024. Vol. 3. No. 2. Art. 100025. DOI: 10.1016/j.igd.2024.100025.

20. Liu Y. et al. The impact of industrial robots on labor investment in China // Economic Modelling. 2024. Vol. 132. Art. 106533. DOI: 10.1016/j.econmod.2024.106533.

21. Eder A. et al. The contribution of industrial robots to labor productivity growth and cross country convergence // Journal of Productivity Analysis. 2024. Vol. 61. P. 123–150. DOI: 10.1007/s11123-023-00707-x.

22. Haller J., Kaven L., Göppert A., Schmitt R.H. Industry 4.0 advancements in discrete production ramp ups: a systematic literature review // Journal of Intelligent Manufacturing. 2025. DOI: 10.1007/s10845-025-02656-8.

23. Lewicki W., Stefanowicz J., Strzelczak S. Assessment of Parameters Affecting the Efficiency of Production Processes in an Automotive Plant // Applied Sciences. 2025. Vol. 15. No. 6. Art. 3092. DOI: 10.3390/app15063092.

24. Address of the President of the Republic of Kazakhstan to the people of Kazakhstan. September 8, 2025. URL: https://www.akorda.kz (accessed: 08.09.2025)


Review

For citations:


Alshanov R.A., Tuleshov A.K., Kuatova M.Zh. Automotive industry 4.0: preconditions for the economic effectiveness of collaborative and mobile robotics. Bulletin of "Turan" University. 2025;(3):54-63. https://doi.org/10.46914/1562-2959-2025-1-3-54-63

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-2959 (Print)
ISSN 2959-1236 (Online)