Application of artificial intelligence in monitoring and performance evaluation of civil servants in the republic of Kazakhstan
https://doi.org/10.46914/1562-2959-2025-1-4-411-429
Abstract
This article examines the practices and prospects of applying artificial intelligence (AI) technologies in the monitoring and analysis of civil servants’ performance in the Republic of Kazakhstan. In the context of active digitalization of the public sector, AI is becoming a key tool for enhancing transparency, objectivity, and effectiveness in administrative processes. The aim of the study is to analyze the current opportunities for implementing AI in the evaluation of public personnel and to identify the conditions that enable effective realization of such approaches. The paper emphasizes institutional, technological, legal, and ethical barriers: the lack of monitoring standards, underdeveloped regulatory frameworks, shortage of qualified specialists, limited data access, and high implementation costs. The scientific novelty lies in the development of an original effectiveness assessment formula (E), which integrates both traditional KPI indicators and qualitative metrics derived from AI analysis. The practical significance of the study lies in the potential to use the proposed model for automated evaluation of competencies, motivation, potential, behavior, and performance outcomes of civil servants. The proposed system can be applied in procedures such as attestation, self-assessment, and monitoring, contributing to a more fair, adaptive, and transparent HR policy. The results support the development of approaches to the digital transformation of public service and can be used in reforming performance evaluation mechanisms.
About the Authors
S. A. DzhumabaevKazakhstan
c.f-m.s., professor.
Astana
A. Nuragli
Russian Federation
PhD student.
Astana
Sh. U. Niyazbekova
Russian Federation
c.e.s., associate professor HAC, RF.
Moscow
References
1. Chistova E.V., ShelmanovA.O., Smirnov I.V. (2019) Primenenie glubokogo obucheniya k modelirovaniyu dialoga na estestvennom yazyke. Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk. Vol. 69. No. 1. P. 105–115. DOI: 10.14357/20790279190110. (In Russian).
2. McCarthy J. (1959) Programs with Common Sense. In Mechanisation of Thought Processes, Proceedings of the Symposium of the National Physics Laboratory. 77–84, London, U.K. URL: http://jmc.stanford.edu/articles/mcc59/mcc59.pdf (accessed: 17.03.2025) (In English).
3. McCarthy J. (2007) What is Artificial Intelligence? URL: http://jmc.stanford.edu/articles/whatisai/whatisai.pdf (accessed: 17.03.2025) (In English).
4. Talapina E.V. (2021) Ispol'zovanie iskusstvennogo intellekta v gosudarstvennom upravlenii. Informacionnoe obshchestvo. No. 3. P. 16–22. (In Russian).
5. Sadkovskaya N.E., Lyapichev N.A., Dorofeeva L.O. (2022) Vliyanie iskusstvennogo intellekta na kachestvo gosudarstvennogo upravleniya. Naukoyemkie tekhnologii. Vol. 23. No. 8, pp. 54–59. (In Russian).
6. Chernaya O.A., Salakin S.A. (2024) Primenenie iskusstvennogo intellekta dlya optimizacii monetarnoj politiki. Delovoj vestnik predprinimatelya. Vol. 3. No. 17, pp. 72–76. (In Russian).
7. Sukirno S., Bagdauletov Zh. (2024) Artificial intelligence as enhancement instrument for office employee's motivation. Statistics, Accounting and Audit. Vol. 2. No. 93, p. 5–15. (In English).
8. Bimoldina Zh.A. (2024) Kak iskusstvennyj intellekt menyayet pravila igry v kiberbezopasnosti. Forum. Seriya: Rol' nauki i obrazovaniya v sovremennom informacionnom obshchestve. No. S2 (32), p. 235–240. (In Russian).
9. Stanford Institute (2024) 2024 Otchet ob Indekse II. URL: https://ai.gov.ru/knowledgebase/infrastrukturaii/2024_otchet_ob_indekse_ii_artificial_intelligence_index_report_2024_stanford/ (accessed: 18.03.2025) (In English).
10. GlideApps (2025) State of AI in operations report. URL: https://www.glideapps.com/ai-report-2025 (accessed: 18.03.2025). (In English).
11. Merenyashev K.M. (2024) Iskusstvennyj intellekt v sfere upravleniya zakupkami. Sovremennye tendencii razvitiya nauki i mirovogo soobshchestva v epokhu tsifrovizacii, XXIX Mezhdunarodnaya konferenciya, pp. 307–311. (In Russian).
12. Lebezova E.M., Bradul N.V. (2023) Opredelyayushchie faktory i problemy vnedreniya iskusstvennogo intellekta v gosudarstvennykh uchrezhdeniyakh. Sbornik nauchnykh rabot serii «Gosudarstvennoe upravlenie», No. 32, pp. 271–282. (In Russian).
13. APA (2024) Pravovye i tekhnologicheskie aspekty vnedreniya II na gosudarstvennoj sluzhbe: analiticheskaya zapiska. URL: https://case.apa.kz/storage/uploads/24/10/29/05/09/57/9878.pdf (accessed: 18.03.2025) (In Russian).
14. Oxford Insights (2024) 2024 Index Rankings: Government AI Readiness Index. URL: https://oxfordinsights.com/ai-readiness/ai-readiness-index/ (accessed: 18.03.2025) (In English).
15. Ministry of Digital Development of Kazakhstan (2024) Kontseptsiya razvitiya iskusstvennogo intellekta na 2024–2029 gody. URL: https://govtec.kz/assets/media/kontseptsiya-26062024-1500.pdf (accessed: 18.03.2025) (In Russian).
16. Oxford Insights (2023) Government AI Readiness Index 2023. URL: https://www.mzaghi.com/wpcontent/uploads/2024/02/2023-Government-AI-Readiness-Index-2.pdf (accessed: 19.03.2025) (In English).
17. Oxford Insights (2024) Government AI Readiness Index 2024. URL: https://www.crhoy.com/wpcontent/uploads/2025/01/2024-Government-AI-Readiness-Index.pdf (accessed: 19.03.2025) (In English).
18. OECD (2019) OECD AI Principles overview. URL: https://oecd.ai/en/ai-principles (accessed: 19.03.2025) (In English).
19. UK Government (2021) National AI Strategy for the United Kingdom. URL: https://assets.publishing.service.gov.uk/media/614db4d1e90e077a2cbdf3c4/National_AI_Strategy_-_PDF_version.pdf (accessed: 19.03.2025) (In English).
20. Russian Federation (2020) Federal'nyj zakon N 123-FZ ot 24.04.2020. Sobranie zakonodatel'stva RF. No. 17, p. 2701. (In Russian).
21. Ministry of Digital Development of Kazakhstan (2025) Zakon Respubliki Kazakhstan «Ob iskusstvennom intellekte» (proekt). URL: https://online.zakon.kz/Document/?doc_id=34868071 (In Russian).
22. Otbetkina T.A. (2022) Istoriya iskusstvennogo intellekta [History of artificial intelligence]. Voprosy ustojchivogo razvitiya. No. 8, pp. 843–858. (In Russian).
23. Carabantes M. (2020) Black-Box Artificial Intelligence: An Epistemological and Critical Analysis. AI & Society, Vol. 35, No. 7, pp. 309–317. DOI: 10.1007/s00146-019-00888-w (In English).
24. Gohel P., Singh P., Mohanty M. (2021) Explainable AI: Current Status and Future Directions. URL: https://doi.org/10.48550/arXiv.2107.07045 (accessed: 19.03.2025) (In English).
25. Coglianese C., Lehr D. (2017) Regulating by Robot: Administrative Decision Making in the MachineLearning Era. The Georgetown Law Journal. Vol. 105. No. 5, pp. 1147–1223. (In English).
26. DigitalDefynd (2025). Role of Artificial Intelligence in Performance Management. URL: https://digitaldefynd.com/IQ/ai-in-performance-management/ (accessed: 19.03.2025) (In English).
27. Itogi goda. (2025) Finansirovanie nauki, novye programmy obuchenija i akcent na prakticheskom primenenii nauchnykh razrabotok. Oficial'nyj informacionnyj resurs Prem'er-ministra Respubliki Kazahstan. iz https://primeminister.kz/ru/news/reviews/itogi-goda-finansirovanie-nauki-novye-programmy-obucheniya-iaktsent-na-prakticheskom-primenenii-nauchnykh-razrabotok-29536 (In Russian).
28. Otchet o realizacii Koncepcii cifrovoj transformacii, razvitija otrasli informacionno-kommunikacionnyh tehnologij i kiberbezopasnosti na 2023–2029 gody. (2024) Ministerstvo cifrovogo razvitija, innovacij i ajerokosmicheskoj promyshlennosti Respubliki Kazahstan. Izvlecheno 5 sentjabrja 2025 g., iz https://www.gov.kz/memleket/entities/mdai/documents/details/645631?lang=ru (In Russian).
Review
For citations:
Dzhumabaev S.A., Nuragli A., Niyazbekova Sh.U. Application of artificial intelligence in monitoring and performance evaluation of civil servants in the republic of Kazakhstan. Bulletin of "Turan" University. 2025;(4):411-429. (In Russ.) https://doi.org/10.46914/1562-2959-2025-1-4-411-429
JATS XML















